Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 34(16): 1260-1279, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977733

RESUMO

Aims: Delphinidin (DEL) is a plant-derived antioxidant with clinical potential to treat inflammatory pain but suffers from poor solubility and low bioavailability. The aim of the study was to develop a well-tolerated cyclodextrin (CD)-DEL complex with enhanced bioavailability and to investigate the mechanisms behind its antinociceptive effects in a preclinical model of inflammatory pain. Results: CD-DEL was highly soluble and stable in aqueous solution, and was nontoxic. Systemic administration of CD-DEL reversed mechanical and heat hyperalgesia, while its local application into the complete Freund's adjuvant (CFA)-induced inflamed paw dose-dependently reduced mechanical hyperalgesia, paw volume, formation of the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE), and tissue migration of CD68+ macrophages. CD-DEL also directly prevented 4-HNE-induced mechanical hyperalgesia, cold allodynia, and an increase in the intracellular calcium concentration into transient receptor potential ankyrin 1 expressing cells. Both 4-HNE- and CFA-induced reactive oxygen species (ROS) levels were sensitive to CD-DEL, while its capacity to scavenge superoxide anion radicals (inhibitory concentration 50 [IC50]: 70 ± 5 µM) was higher than that observed for hydroxyl radicals (IC50: 600 ± 50 µM). Finally, CD-DEL upregulated heme oxygenase 1 that was prevented by HMOX-1 siRNA in vitro. Innovation:In vivo application of DEL to treat inflammatory pain is facilitated by complexation with CD. Apart from its antioxidant effects, the CD-DEL has a unique second antioxidative mechanism involving capturing of 4-HNE into the CD cavity followed by displacement and release of the ROS scavenger DEL. Conclusion: CD-DEL has antinociceptive, antioxidative, and anti-inflammatory effects making it a promising formulation for the local treatment of inflammatory pain.


Assuntos
Antocianinas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Hiperalgesia/tratamento farmacológico , beta-Ciclodextrinas/química , Aldeídos/metabolismo , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Modelos Animais de Doenças , Estabilidade de Medicamentos , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Ratos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
2.
Front Cell Neurosci ; 14: 573950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192319

RESUMO

Ischemic stroke is one of the leading causes of death worldwide. It damages neurons and other supporting cellular elements in the brain. However, the impairment is not only confined to the region of assault but the surrounding area as well. Besides, it also brings about damage to the blood-brain barrier (BBB) which in turn leads to microvascular failure and edema. Hence, this necessitates an on-going, continuous search for intervention strategies and effective treatment. Of late, the natural sweetener stevioside proved to exhibit neuroprotective effects and therapeutic benefits against cerebral ischemia-induced injury. Its injectable formulation, isosteviol sodium (STVNA) also demonstrated favorable results. Nonetheless, its effects on the BBB have not yet been investigated to date. As such, this present study was designed to assess the effects of STVNA in our in vitro stroke model of the BBB.The integrity and permeability of the BBB are governed and maintained by tight junction proteins (TJPs) such as claudin-5 and occludin. Our data show increased claudin-5 and occludin expression in oxygen and glucose (OGD)-deprived murine brain capillary cerebellar endothelial cells (cerebEND) after STVNa treatment. Likewise, the upregulation of the transmembrane protein integrin-αv was also observed. Finally, cell volume was reduced with the simultaneous administration of STVNA and OGD in cerebEND cells. In neuropathologies such as stroke, the failure of cell volume control is a major feature leading to loss of cells in the penumbra as well as adverse outcomes. Our initial findings, therefore, point to the neuroprotective effects of STVNA at the BBB in vitro, which warrant further investigation for a possible future clinical intervention.

3.
ACS Omega ; 5(30): 19202-19209, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775923

RESUMO

Microbial, mammalian, and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, for example, with carboxylic acids or mineral acids, is a natural blueprint to maintain basic metabolites in solution. Here, we aim at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with the basic natural product papaverine resulting in enhanced aqueous solubility. The obtained PILs were characterized by 1H-15N HMBC nuclear magnetic resonance (NMR) and in the solid state using X-ray powder diffraction, differential scanning calorimetry, and dissolution measurements. Furthermore, their supramolecular pattern in aqueous solution was studied by means of potentiometric and photometrical solubility, NMR aggregation assay, dynamic light scattering, zeta potential, and viscosity measurements. Thereby, we identified the naturally occurring carboxylic acids, citric acid, malic acid, and tartaric acid, as being appropriate counterions for papaverine and which will facilitate the formation of PILs with their beneficial characteristics, like the improved dissolution rate and enhanced apparent solubility.

4.
Metallomics ; 11(12): 2033-2042, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31577310

RESUMO

Three new manganese(i) tricarbonyl complexes [Mn(bpqa-κ3N)(CO)3]Br, [Mn(bqpa-κ3N)(CO)3]Br, and [Mn(CO)3(tqa-κ3N)]Br as well as the previously described compound [Mn(CO)3(tpa-κ3N)]Br with bpqa = bis(2-pyridinylmethyl)(2-quinolinylmethyl)amine, bqpa = bis(2-quinolinylmethyl)(2-pyridinylmethyl)amine, tqa = tris(2-quinolinylmethyl)amine, and tpa = tris(2-pyridinylmethyl)amine were examined for their antibacterial activities on 14 different multidrug-resistant clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa, in recognition of the current antimicrobial resistance (AMR) concerns with these pathogens. Minimal inhibitory concentrations (MIC) of the most potent tqa compound were in the mid-micromolar range and generally lower than that of the free ligand. Activity against both bacterial species increased with the number of quinolinylmethyl groups and lipophilicity in the order of tpa < bpqa < bqpa ≈ tqa, consistent with measured increases in release of ATP, a uniquely cytoplasmic biomolecule and induced permeability to exogenous fluorescent intercalating compounds. [Mn(CO)3(tqa-κ3N)]Br was also evaluated in the Galleria mellonella model of infection, and displayed a lack of host toxicity combined with effective bacterial clearance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Manganês/farmacologia , Mariposas/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Animais , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/classificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Manganês/química , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
5.
Eur J Med Chem ; 152: 377-391, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29742443

RESUMO

Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain.


Assuntos
Amidas/farmacologia , Flúor/farmacologia , Quinolonas/farmacologia , Tripanossomicidas/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Amidas/química , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Flúor/química , Humanos , Camundongos , Estrutura Molecular , Quinolonas/química , Relação Estrutura-Atividade , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...